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4.0 Algebraic Turbulence Models 

 
4.1 Inner Eddy Viscosity Model 
 
Most of the earliest turbulence models were based on Prandtl’s mixing length 
hypothesis.  Prandtl1 suggested that the eddy viscosity could be represented by 
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The Prandtl mixing length relates the eddy viscosity to the local mean velocity 
gradient.  The secret to successful applications of the mixing length hypothesis is 
to find some general method of defining the mixing length.  Most algebraic 
models divide the boundary layer into an inner and outer region as described in 
Chapter 3.  The inner layer includes the viscous sublayer, the buffer layer, and 
part of the fully turbulent log region.  The outer layer includes the remaining part 
of the log layer and the wake region.  The eddy viscosity in the inner layer follows 
Prandtl's form and is given by 
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where the mixing length Lm is given by 
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where y is the distance normal to the wall, κ is the von Karmen constant, and the 
vorticity Ω is defined as 
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4.2  Cebeci-Smith Model 
 
Cebeci-Smith2 suggested that the outer eddy viscosity be expressed as 
 
( ) *δραμ eoutert u=          (4.5) 
 
Here α is usually assigned a value of 0.0168 for flows where the Reynolds 
number based on momentum thickness (Reθ) is greater than 5000, δ* is the 
displacement thickness, and ue is the velocity at the edge of the boundary layer. 
The final eddy viscosity is  
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( ) ( )[ ]outertinnertt μμμ ,min=         (4.6) 

 
This model is fairly simple, but it requires knowledge of the conditions at the edge 
of the boundary layer and the boundary layer thickness.  These quantities are not 
always easy to calculate in complicated flows with a Navier-Stokes code since it 
is often difficult to define where the boundary layer edge actually occurs. 
 
4.3  Baldwin-Lomax Model 
 
Baldwin-Lomax3 developed a form of the outer eddy viscosity that did not require 
knowledge of the conditions at the edge of the boundary layer.  This model has 
become quite popular for CFD applications.  The eddy viscosity in the outer layer 
is defined as  
 
( ) klebwakecpoutert FFKCρμ =         (4.7) 
 
where Fwake contains the mixing length term and Fkleb is the Klebanoff 
intermittency factor.  These terms are defined as  
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The quantities Fmax and ymax are taken from the maximum of the F function 
defined as 
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and Udiff is given by 
 

( ) ( )min
22
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22 VUVUU diff +−+=       (4.10) 

 
The F function is calculated along a line normal to the wall.  The F function for a 
typical attached boundary layer is shown in Fig. 4.1.   
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Figure 4.1  The F function (Eq. 4.9) for an attached boundary layer. 
F 

 
The Klebanoff intermittency factor4 is given by 
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The final eddy viscosity is  
 

( ) ( )[ ]outertinnertt μμμ ,min=         (4.12) 
 
The constants used in the Baldwin-Lomax model are 
 

068.0,4.0,0.1,3.0,6.1,26 ======+ KCCCA wkklebcp κ     (4.13) 
 
Algebraic models work well for flows that can be characterized by a single length 
scale such as attached boundary layers or simple shear layers.  The Baldwin-
Lomax model determines the appropriate mixing length from the location of the 
peak in the F function.  For simple flows there will only be one peak in the F 
function.  In more complicated flows with multiple shear layers such as separated 
boundary layers or wall jets the F function will contain multiple peaks.  When 
multiple peaks are present it becomes difficult to automatically choose the proper 
peak to use, if a single peak can be used to model the turbulent flow.  Degani 
and Schiff5 recommended a procedure to automatically select the first significant 
peak in the F function.  This modification to the search procedure for the peak 
has been shown to improve the performance of the Baldwin-Lomax for high 
angle-of-attack flows with cross-flow separation.  
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4.4  Wake and Jet Model 
 
The Baldwin-Lomax model has been modified for use in wakes and jets (Ref. 6).  
First, Udiff in Eq. 4.11 is redefined as  
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ydiff VUVUU +−+=       (4.14) 
 
The exponential term in the definition of F(y) (Eq. 4.9) is set to zero yielding 
 

Ω= yyF )(           (4.15) 
 
The Fwake function (Eq. 4.8) is redefined to be 
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The ymax location in Eq. 4.16 is defined to be the location where 

max
Ω occurs.  

Finally the Klebanoff intermittency factor Fkleb (Eq. 4.11) is rewritten as  
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This wake formulation will work for individual simple shear layers.  If multiple 
shear layers are present, the user must partition the flow and apply the 
turbulence model to each shear layer individually.  This can easily become 
impractical for complicated geometries. 
 
4.5  Algebraic Model Shortcomings 
 
The flow in a two-dimensional channel with a circular arc bump contraction can 
be used to demonstrate two shortcomings of the Baldwin-Lomax turbulence 
models.  These shortcomings are the model’s tendency to switch Fmax peaks and 
the lack of any transport terms in the turbulence model.  Fig. 4.2 shows the 
geometry and the eddy viscosity contours for both the Baldwin-Lomax and 
Spalart-Allmaras turbulence models.  The eddy viscosity predicted by the 
Baldwin-Lomax is seen to reduce itself almost to zero at the start of the bump.  
The Spalart-Allmaras one-equation transport turbulence model (discussed in the 
next section) predicts a much smoother distribution of eddy viscosity on the 
bump.  The reason for the anomaly in the Baldwin-Lomax model can be seen in 
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Fig. 4.3.  The location of the Fmax peak moves very close to the wall at the start of 
the bump (x=0) and rises back to its original level at the bump trailing edge (x=1).  
The relative magnitude of the Fmax peak is also shown if Fig. 4.3, and is seen to 
increase in the region of the bump.    The eddy viscosity is proportional to the 
product of the distance of the peak off the wall and the magnitude of the peak, 
and is seen to decrease in the region above the bump because the Fmax peak has 
moved very near the wall.  The sudden switching of the Fmax peak causes the 
turbulence level to be greatly reduced in the favorable pressure gradient region 
near the bump leading edge.  If the Baldwin-Lomax model included transport 
terms, then the higher upstream values of eddy viscosity would be transported 
downstream at the beginning of the bump, and the Baldwin-Lomax predicted 
eddy viscosity distribution would not demonstrate the discontinuous behavior it 
shows here.  

 
 

Figure 4.2  Eddy viscosity contours for a circular arc bump in a two-dimensional 
channel for two different turbulence models. 
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Figure 4.3  Distance above the wall of the Fmax peak and the Fmax value for a two-
dimensional channel with a circular arc bump. 

 
4.6  Grid Sensitivity for a Flat Plate with Adiabatic Wall 
 
The initial wall spacing of the computational grid and the grid-stretching ratio (the 
ratio of the change in grid spacing normal to the wall) can affect the accuracy of 
the Baldwin-Lomax model.  Figure 4.4 shows the sensitivity of the skin friction to 
initial wall spacing for a flat plate.  The grid-stretching ratio was 1.2 for all these 
cases.  The plots include the theoretical skin friction curves of White and of 
Spalding. 
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Figure 4.4   Flat plate skin friction predictions for the Baldwin-Lomax turbulence 

model  for varying initial wall grid point spacings. 
 

The calculated boundary layer is seen to become fully turbulent around a length 
Reynolds number (Rex) of 1x106.  The results for y+=0.2 and y+=1 are virtually 
identical indicating a grid independent solution.  The y+=5 solution shows some 
small divergence from the y+=1 solution at the lower length Reynolds numbers 
while the y+=10 solution shows large differences from the other solutions.   
 
Predicted velocity profiles for the flat plate boundary layer for various initial wall 
grid point spacings are shown in Fig. 4.5.  The velocity profile shows little effect 
of the initial spacing for all but the y+=10 profile.  All of the profiles but the y+=10 
profile are in good agreement with the theoretical profile from Spalding.  Note 
that the theoretical profile does not include the law-of-the wake (see Chapter 3), 
and hence the predicted profiles diverge from the theoretical profile in the wake 
region of the boundary layer.  The predicted eddy viscosity for various initial wall 
spacings is shown in Fig. 4.6. 
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Figure 4.5  Flat plate boundary layer profiles predicted by the Baldwin-Lomax 

turbulence model for varying initial wall grid point spacings. 
 

 
Figure 4.6  Eddy viscosity distribution predicted by the Baldwin-Lomax turbulence 

model for varying grid initial wall spacings. 
 

Here again it is seen that the y+=0.2 and the y+=1.0 results are almost identical.  
The y+=5 and y+=10 results show the solutions are no longer grid independent at 
larger wall spacings. 
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The effect of grid stretching ratio on skin friction for a flat plate is shown in Fig. 
4.7.  All of these solutions used an initial wall spacing of y+=1. 

 
Figure 4.7  The effect of grid stretching ratio on the skin friction for a flat plate 

boundary layer using the Baldwin-Lomax turbulence model. 
 

There seems to be very little effect of grid stretching for this cases indicating that 
the initial wall spacing is the more critical parameter for skin friction predictions 
for flat plates with the Baldwin-Lomax turbulence model.  This is also the case for 
the velocity profile, as seen in Fig. 4.8.   The eddy viscosity does change as the 
stretching ratio increases as shown in Fig. 4.9.  It is interesting to note that a 
wide range of eddy viscosity distributions have little effect on skin friction and the 
velocity profile for a flat plate boundary layer.  This insensitivity to the absolute 
eddy viscosity level is probably a major reason why the eddy viscosity concept 
has worked so well in practice. 
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Figure 4.8  The effect of grid stretching ratio on the velocity profile for a flat plate 

boundary layer using the Baldwin-Lomax turbulence model. 
 

 
Figure 4.9  The effect of grid stretching ratio on the eddy viscosity distribution for 

a flat plate boundary layer using the Baldwin-Lomax turbulence model. 
 
4.7  Grid Sensitivity for Axisymmetric Bump 
 
A second example of the grid sensitivity of the Baldwin-Lomax turbulence model 
that includes a pressure gradient is the NASA Ames transonic axisymmetric 
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bump experiment (Ref. 7).  The geometry is shown in Fig. 4.10.  The model 
consisted of a sharp-lipped hollow cylinder with a 15.2 cm outer surface 
diameter.  The bump was a circular arc 20.3 cm long and 1.9 cm high that begins 
60.3 cm downstream of the cylinder leading edge.  The upstream intersection of 
the bump and cylinder was faired with a circular arc.  The test was run at a Mach 
number of 0.875 and a chord Reynolds number of 2.67x106.  

c=20.3 cm 

h=1.9 cm 

D=15.2 cm 

M=0.875 Shock 

Recirculation 

Figure 4.10  Geometry for the transonic axisymmetric bump. 

The effect of initial grid spacing on the pressure coefficient distribution along the 
bump is shown in Fig. 4.11.  The stretching ratio was 1.2 for these cases. The 
pressure coefficient seems to be relatively insensitive to the initial grid spacing, 
with the y+=10 and y+=20 curves being slightly displaced from the other curves.   
The velocity distribution at the aft junction of the bump and the cylinder (x/c=1) is 
shown in Fig. 4.12.   The y+=20 solution predict a larger velocity in the reverse 
flow region than the other solutions.  Grid stretching effects on the pressure 
coefficient distribution along the bump is shown in Fig. 4.13.  The initial grid 
spacing was 1.2 for these cases.  The pressure distribution coefficient changes 
slightly as the grid-stretching ratio is increased to 1.5.  The solution in the 
separated region differs greatly for a grid-stretching ration of 2.0.  The effect on 
the velocity distribution at x/c=1 is shown in Fig. 4.14.  As with increasing initial 
grid spacing, increasing the grid spacing increases the size and the magnitude of 
the separated flow region.    
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Figure 4.11  The effect of initial grid wall spacing on the pressure coefficient for 

the axisymmetric bump using the Baldwin-Lomax turbulence model. 

 
Figure 4.12  The effect of initial grid wall spacing on the velocity distribution at 
x/c=1 for the axisymmetric bump using the Baldwin-Lomax turbulence model. 
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Figure 4.13  The effect of grid stretching on the pressure coefficient for the 

axisymmetric bump using the Baldwin-Lomax turbulence model. 

 
Figure 4.14  The effect of grid stretching on the velocity profile at x/c=1 for the 

axisymmetric bump using the Baldwin-Lomax turbulence model. 
  
The results for the Ames axisymmetric bump indicate that the grid-stretching ratio 
is a critical parameter when pressure gradients are present in the flow.  The 
stretching ratio should probably be kept between 1.2 and 1.3 to assure that the 
grid can capture the pressure gradient effects.  This is true in both structured and 
unstructured grids. 
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4.8  Grid Sensitivity for a Flat Plate with Heat Transfer 
 
Calculating heat transfer accurately can be more difficult than predicting skin 
friction.  This can be seen in the subsonic flat plate example when the wall 
temperature is specified to be 1.5 times the free-stream temperature.  The 
sensitivity of the skin friction and heat transfer result with varying initial grid wall 
spacing is shown in Fig. 4.15 and Fig. 4.16.  The grid stretching ratio was fixed at 
1.2 for these results.  Both the skin friction and heat transfer seem to be relatively 
insensitive to the wall spacing for wall spacings less than y+=5 when no pressure 
gradient is present. 

 
Figure 4.15  The effect of wall spacing on the skin friction on a flat plate with heat 

transfer using the Baldwin-Lomax turbulence model. 
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Figure 4.16  The effect of wall spacing on the heat transfer (Stanton number) on 

a flat plate using the Baldwin-Lomax turbulence model. 
 

The velocity and temperature profiles for a length Reynolds number (Rex) of 
1.0x107 are shown in Fig. 4.17 and 4.18 respectively.  Both the velocity and 
temperature profiles are relatively insensitive to wall spacing for this model when 
no pressure gradient is present. 

 
Fig. 4.17  The effect of wall spacing on the velocity profile on a flat plate with heat 

transfer using the Baldwin-Lomax turbulence model. 
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Fig. 4.18  The effect of wall spacing on the temperature profile on a flat plate with 

heat transfer using the Baldwin-Lomax turbulence model. 
 

Grid stretching effects on skin friction and heat transfer predictions are shown in 
Fig. 4.19 and 4.20.  The effect of grid stretching on the velocity and temperature 
profiles are shown in Fig. 3.22 and 3.23 respectively.  The initial wall spacing was 
held at y+=0.1 for these calculations.  The results reach a grid independent result 
for a stretching ratio of less than 1.3. 

 
Figure 4.19  The effect of grid stretching on the skin friction on a flat plate with 

heat transfer using the Baldwin-Lomax turbulence model. 
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Figure 4.20  The effect of grid stretching on heat transfer (Stanton number) on a 

flat plate using the Baldwin-Lomax turbulence model. 

 
Figure 4.21  The effect of grid stretching on the velocity profile on a flat plate with 

heat transfer using the Baldwin-Lomax turbulence model. 
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Figure 4.22  The effect of grid stretching on the temperature profile on a flat plate 

with heat transfer using the Baldwin-Lomax turbulence model. 
 
4.9  Grid Sensitivity for a Nozzle with Heat Transfer 
 
Flow through a supersonic nozzle with a constant temperature wall can serve as 
a test case for evaluating the performance of the turbulence model in the 
presence of strong pressure gradients.  Back, Massier, and Gier8 measured the 
wall pressure distribution and heat transfer for a converging-diverging nozzle with 
a throat diameter of 0.0458 meters and an exit diameter of 0.1227 meters.  High-
pressure air was heated by the internal combustion of methanol and flowed along 
a cooled constant area duct with a length of 0.4572 meters and a diameter of 
0.355 meters before entering the nozzle.  The nozzle geometry and boundary 
conditions are shown in Fig. 4.23.  The gas could be treated as a calorically 
perfect gas with a ratio-of-specific heats (γ) of 1.345.  The nozzle exit Mach 
number was approximately 2.5.  The molecular viscosity and thermal conductivity 
were assumed to vary according to Sutherland’s law.   
 

 
 

 
 

Pt=150psia 
Tt=1418oR 

Twall=0.5Tt 
Supersonic 
Outlet 

Figure 4.23  Nozzle geometry. 
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The initial wall spacing was varied with a grid stretching ratio of 1.2 in the 
boundary layer.  The grid spacing was held constant in the core of the nozzle.  
Comparisons of the predicted and measured pressure along the nozzle are 
shown in Fig. 4.24 for varying initial wall spacings.   The throat is located at 
x=0.091 meters.  The pressure distribution is seen to be insensitive to the initial 
wall spacing.  The heat transfer at the wall is shown in Fig. 4.25.  The results are 
in poor agreement with the data and are quite sensitive to the initial wall spacing, 
especially for wall spacing greater than y+=1. 

 
Figure 4.24  The effect of wall spacing on the pressure distribution for a 
supersonic nozzle with heat transfer using the Baldwin-Lomax turbulence model.  

 
Figure 4.25  The effect of wall spacing on the wall heat transfer distribution for a 
supersonic nozzle using the Baldwin-Lomax turbulence model. 



4-20                                  

 
The poor performance of the Baldwin-Lomax model for this case is due to the 
difficulty in choosing the proper Fmax peak as was described in Section 4.5.  The 
F function at the nozzle throat is shown in Fig. 4.26.  Notice that multiple peaks 
are present in the function.  It is extremely difficult to predict which, if any, of 
these three peaks is the proper value for this case.  The eddy viscosity 
distribution at the nozzle throat is shown in Fig. 4.27.  The Spallart-Allmaras eddy 
viscosity distribution is included in Fig. 4.26 for comparison.  The Baldwin-Lomax 
eddy viscosity is much lower than the Spalart-Allmaras distribution and is seen to 
cut off prematurely.  This low value of eddy viscosity results in a low prediction of 
the wall heat transfer.  
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Figure 4.26  The F function at the nozzle throat. 
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Fig. 4.27  The eddy viscosity distribution at the nozzle throat. 

 
4.10  Summary 

 
Algebraic turbulence models were popular in the 1970’s and 1980’s because of 
their simplicity and robustness.  As Navier-Stokes CFD applications became 
more complex in the 1990’s these models began to lose popularity because of 
accuracy limitations for flows that contain multiple shear layers or boundary layer 
separation.  The difficulties encountered when multiple peaks occur in the F 
function have been demonstrated.  These models have also lost favor in 
unstructured grid applications since they require a velocity profile over multiple 
grid points aligned with the flow for successful application.   
 
The eddy viscosity predicted by an algebraic turbulence model is only a function 
of the local velocity profile used to generate the F function.  Thus the eddy 
viscosity relates directly to the local instantaneous vorticity field of that profile and 
cannot model the transport of turbulence by the flow.  This makes these models 
a poor choice for unsteady flows and for flows where turbulent transport is 
important. 
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Baldwin-Lomax Application Hints 
 

1. The Baldwin-Lomax model requires that the F function be well 
defined.  This normally requires that at least three points be located 
within the sublayer (y+<10).  The first point off the wall should be 
located about y+<5 for pressure distributions, y+<2 to obtain 
reasonable skin friction values, and y+<0.5 for heat transfer.   The grid 
stretching normal to the wall should not exceed 1.3.  Improved heat 
transfer results can be obtained by using a constant spacing for the 
first three cells off the wall. 

2. In order to reduce the probability of finding a second peak well off the 
wall, it is usually good to limit the number of points over which the F 
function is calculated. 

3. Care should be taken not to divide viscous regions such as boundary 
layers when dividing the computational domain for blocked or chimera 
applications since the entire velocity profile is required to properly 
define the Fmax and Udiff quantities. 
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